
Contact twitter

@fermingalan
Contact email

fermin.galanmarquez@telefonica.com

(Reference Orion Context Broker version: 1.4.0)

NGSIv2 Overview for Developers
That Already Know NGSIv1

Outline • Introduction to NGSIv2

• RESTful-ness

• URL & payload simplification

• Native JSON datatypes

• Text-based attribute value set/get

• Geolocation capabilities

• Filtering

• Datetime support

• Subscription improvements

• Batch operations

• Working with IDs

• Pagination

• Next things to come

2

Two “flavors” of NGSI API

• NGSIv1 (the one you already know)

– Original NGSI RESTful binding of OMA-NGSI

– Implemented in 2013

– Uses the /v1 prefix in resource URL

• NGSIv2

– A revamped, simplified binding of OMA-NGSI

• Simple things must be easy

• Complex things should be possible

• Agile, implementation-driven approach

• Make it as developer-friendly as possible (RESTful, JSON, …)

– Enhanced functionality compared to NGSIv1 (e.g. filtering)

– Stable, ready for production, version already available

• Current NGSIv2 version is Release Candidate 2016.05 http://telefonicaid.github.io/fiware-
orion/api/v2/stable

• New features coming (see last part of this presentation)

– Uses the /v2 prefix in resource URL

• Introduction to NGSIv2

– https://docs.google.com/presentation/d/1_fv9dB5joCsOCHlb4Ld6A-
QmeIYhDzHgFHUWreGmvKU/edit#slide=id.g53c31d7074fd7bc7_0

3

http://telefonicaid.github.io/fiware-orion/api/v2/stable
https://docs.google.com/presentation/d/1_fv9dB5joCsOCHlb4Ld6A-QmeIYhDzHgFHUWreGmvKU/edit#slide=id.g53c31d7074fd7bc7_0

The NGSI model is kept as it is in NGSIv2

Attributes

• Name
• Type
• Value

Entity

• EntityId
• EntityType

1 n

“has”

Metadata

• Name
• Type
• Value1 n

“has”

4

NGSIv2 status (AKA the “NGSIv2 disclaimer”)

• NGSIv2 is in “release candidate” status

– By "release candidate" we mean that the specification is quite stable,
but changes may occur with regard to new release candidates or the
final version. In particular, changes may be of two types:

• Extensions to the functionality currently specified by this
document. Note that in this case there isn't any risk of breaking
backward compatibility on existing software implementations.

• Slight modifications in the functionality currently specified by this
document, as a consequence of ongoing discussions. Backward
compatibility will be taken into account in this case, trying to
minimize the impact on existing software implementations. In
particular, only completely justified changes impacting backward
compatibility will be allowed and "matter of taste" changes will not
be allowed.

5

So… when should I use NGSIv1 or NGSIv2?

• In general, it is always preferable to use NGSIv2

• However, you would need to use NGSIv1 if

– You need register/discovery operations (context management
availability functionality)

• Not yet implemented in NGSIv2 (in roadmap)

– Zero tolerance to changes in software interacting with Orion

• Even if you use NGSIv1, you can still use NGSIv2
functionality and requests

– See “Considerations on NGSIv1 and NGSIv2 coexistence”
section in the Orion manual

6

RESTful-ness

• In NGSIv1

– Originally based on OMA-NGSI standard operations, not really
RESTful

• The URL doesn’t identify a resource, but an operation type

• The verb is always POST

• Actually, NGSIv1 is closer to HTTP-based RPC than to RESTful

– An extended set of operations (convenience operations) were
added in a later stage but with “legacy” from standard
operations that make it hard to apply full RESTful principles

• E.g. dual response code

• NGSIv2 has been designed from scratch with RESTful
principles in mind

– Batch operations (similar to standard operations in NGSIv1)
are also provided, but without impacting the RESTful
operations in the API

7

RESTful-ness

8

200 OK
...
{
"contextElement" : {

"type" : "",
"isPattern" : "false",
"id" : "Car1"

},
"statusCode" : {

"code" : "404",
"reasonPhrase" : "No context element found",
"details" : "Entity id: /Car1/"

}
}

GET /v1/contextEntities/Car1

404 Not Found
...
{
"error": "NotFound",
"description": "The requested entity has not

been found. Check type and id“
}

GET /v2/entities/Car1

NGSIv1

NGSIv2

both status codes have to be taken into account by
the client in order to detect error conditions,

which increases complexity

only HTTP response code,
following RESTful principles -

simpler to process

Example: get Car1 entity

URL & payload simplification

• In NGSIv1 the strict alignment with OMA NGSI involves
complexity and ineffectiveness

– Message payloads include a lot of structural overhead elements not
actually needed

– Response payload in methods that don’t really need a payload from a
semantic point of view (e.g. update operation)

– Unnecessarily long structural elements in URLs

• NGSIv2 simplifies URLs and payload, leading to a much
more lean and less verbose API

9

URL & payload simplification

10

POST /v1/contextEntities
...
{

"id": "Car1",
"type": "Car",
"attributes": [
{

"name": "colour",
"type": "Text",
"value": "red"

}
]

}

200 OK
Location: /v2/entities?type=Car

POST /v2/entities
…
{
"id": "Car1",
"type": "Car",
"colour": {

"value": "red",
"type": "Text",

}
}

NGSIv1

NGSIv2

Most of the NGSIv1 response payload is
useless: clients only need to know the

status code. In NGSIv2 the response has
no payload at all

shorter URLs in
NGSIv2

200 OK
...
{

"contextResponses": [
{

"attributes": [
{

"name": "colour",
"type": "float",
"value": ""

}
],
"statusCode": {

"code": "200",
"reasonPhrase": "OK"

}
}

],
"id": "Car1",
"isPattern": "false",
"type": “Car"

}

structural
overhead

Example: create Car1
entity (type Car) with
attribute colour set to
“Red”

URL & payload simplification

11

GET /v1/contextEntities/type/Car/id/Car1/attributes/colour GET /v2/entities/Car1/attrs/colour?type=Car

NGSIv1 NGSIv2

redundant (already part of the request URL)

200 OK
...
{

"attributes": [
{

"name": "colour",
"type": "Text",
"value": " red"

}
],
"statusCode": {

"code": "200",
"reasonPhrase": "OK"

}
}

mostly useless

200 OK
...
{

"value": "red",
"type": "Text",
"metadata": {}

}

shorter URL in
NGSIv2

structural
overhead

Example: get attribute
colour at Car1 entity
(type Car)

URL & payload simplification

• Moreover, NGSIv2 provides simplified data representations

– keyValues: exclude attribute type and metadata

– values: only attribute values (attrs is used to order the values in the
resulting vector)

– unique: like values which in addition removes duplicate values

• Not only for retrieval operations, also for creation/update
operations

– Default attribute types are used in that case

12

GET /v2/entities/Car1/attrs?options=keyValues

200 OK
...
{

"model": "Ford",
"colour": "red",
"temp": 22

}

GET /v2/entities/Car1/attrs?options=values&attrs=model,colour,temp

200 OK
...
["Ford", "red", 22]

Example: get attribute
colour at Car1 entity (type
Car)

Native JSON datatypes

• In NGSIv1

– All attribute values are string based to align with XML encoding

• At the end, XML support was removed (in Orion 1.0.0), but it left
an awful legacy

– Although creation/update operations can use numbers, bool,
etc. at the end they are transformed to strings and stored in
that way internally

– Retrieve operation always provides string encoded values (*)

• NGSIv2 fully supports all the types described in the JSON
specification (string, number, boolean, object, array and
null) (**)

13

(*) Exception: entities created/updated with NGSIv2 (which support native types) and retrieved
with NGSIv1 will render without stringification.
(**) Support for metadata vector and object values was added in Orion 1.3.0 (i.e. not included in
IoTP v4.0)

Native JSON datatypes

1414

POST /v1/contextEntities
...
{

"id": "Car1",
"type": "Car",
"attributes": [
{

"name": "speed",
"type": "Number",
"value": 98

}
]

}

POST /v2/entities?options=keyValues
…
{
"id": "Car1",
"type": "Car",
"speed": 98,
"isActive": true

}

NGSIv1

NGSIv2

created as
number but
retrieved as

string… weird!

GET /v1/contextEntities/Car1/attributes/speed
...
{

"attributes": [
{

"name": "speed",
"type": "Number",
"value": "98"

}
],
"statusCode": { … }

}

GET /v2/entities/Car1/attrs?options=keyValues
…
{
"speed": 98,
"isActive": true

}

coherent result

Example: create Car1
entity (type Car) with
attribute speed set to 98

Text-based attribute value set/get

• In NGSIv1

– There is no similar functionality

• NGSIv2 offers set/get attribute access directly without
anything else than the attribute value itself in the
request/response payload

– In the set operation, attribute type and metadata are kept as they are

15

PUT /v2/entities/Car1/attrs/speed/value
Content-Type: text/plain
…

86

GET /v2/entities/Car1/attrs/speed/value

200 OK
Content-Type: text/plain
…

86200 OK
…

Example: set speed attribute
value at Car1 entity

Example: get speed attribute
value at Car1 entity

Geolocation capabilities

• In NGSIv1

– Entity location must be a point

– Queries are based on an area specification (circle or polygon, inner or
outer area)

– Query as part of queryContext payload scope

• In NGSIv2

– In addition to point, entity location can be a line, box, polygon or
arbitrary GeoJSON

– Queries are based on a spatial relationship and a geometry

• Spatial relationships: near (max and min distance), coveredBy, intersect,
equal and disjoint

• Geometries: point, line, box, polygon

– Query as part of URL (more user-friendly than payload-based
approach)

16

Geolocation capabilities

17

NGSIv1

NGSIv2

Much easier and more compact in NGSIv2

POST /v1/queryContext
…
{

"entities": [
{

"type": "City",
"isPattern": "true",
"id": ".*"

}
],
"restriction": {

"scopes": [
{
"type" : "FIWARE::Location",
"value" : {

"circle": {
"centerLatitude": "40.418889",
"centerLongitude": "-3.691944",
"radius": "13500"

}
}

}
]

}
}

GET /v2/entities?
idPattern=.*&
type=City&
georel=near;maxDistance:13500&
geometry=point&
coords=40.418889,-3.691944

Example: retrieve all entities of type
“City” (no matter the id) whose
distance to Madrid city center (GPS
coordinates 40.418889,-3691944) is
less than 13.5 km

Geolocation capabilities

18

Point location
(the only one supported by NGSIv1)

POST /v2/entities
{

"id": "E",
"type": "T",
"location": {

"type": "geo:json",
"value": {
"type": "Polygon",
"coordinates": [[[2, 1], [4, 3], [5, -1], [2, 1]]]

} } }

POST /v2/entities
{

"id": "E",
"type": "T",
"location": {

"type": "geo:polygon",
"value": ["2, 2", "8, 7", "-1, 4", "2, 2"]

}
}

POST /v2/entities
{

"id": "E",
"type": "T",
"location": {

"type": "geo:box",
"value": ["2, 2", "8, 7"]

}
}

POST /v2/entities
{

"id": "E",
"type": "T",
"location": {

"type": "geo:point",
"value": "40.41,-3.69"

}
}

POST /v2/entities
{

"id": "E",
"type": "T",
"location": {

"type": "geo:line",
"value": ["2, 2", "8, 7"]

}
}

Line location (e.g. a street) Box location (e.g. a squared building)

Polygon location (e.g. a city district) GeoJSON geometry (full flexibility)

Filtering

• In NGSIv1

– Limited filtering functionality, much of it based on queryContext
complex scopes

– Filters are not supported in subscriptions

• In NGSIv2 the mechanism

– Is simpler (see next slide)

– Can be applied to both queries and subscriptions (described in a later
topic of this presentation)

19

POST /v1/queryContext
…
{
"restriction": {

"scopes": [
{
"type" : "FIWARE::StringFilter",
"value" : "temp<24“

…
}

This is the only interesting
part, all the rest is

structural overhead

Example: filtering entities
which temperature is less
than 24

• For the GET /v2/entities operation, retrieve all entities…

– … of a given entity type

– … whose entity id is in a list

– .. whose entity id match a regex pattern

• Example: the id starts with “Room” followed by a digit from 2 to 5

– … with an attribute that matches a given expression

• Example: attribute temp is greater than 25

• Filters can be used simultaneously (i.e. like AND condition)

20

GET /v2/entities?type=Room

GET /v2/entities?id=Room1,Room2

GET /v2/entities?idPattern=^Room[2-5]

Filtering

GET /v2/entities?q=temp>25

supported operators:
• == (or :), equal
• !=, unequal
• >, greater than
• <, less than
• >=, greater than or equal
• <=, less than or equal
• A..B, range
• ^=, pattern (regex)
• Existence/inexistence

Datetime support

• In NGSIv1

– There is no support for attributes meaning dates, they are treated as conventional strings

• NGSIv2 implements date support

– Based on ISO ISO8601 format

– Use reserved attribute type DateTime to express a date

– Attribute value arithmetic filters can be used with dates as if they were numbers

– Entity dateModified and dateCreated special attributes, to get entity creation and last
modification timestamps

• They are shown in query responses using options=dateModified,dateCreated (*)

21

(*) This is probably going to change in a next version of the NGSIv2 API to use attributes=dateModified,dateCreated instead. However, Orion will keep
backward compatibility with the way described here

POST /v2/entities
…
{

"id": "John",
"birthDate": {

"type": "DateTime",
"value": "1979-10-14T07:21:24.238Z"

}
}

GET /v2/entities?q=birthDate<1985-01-01T00:00:00

Example: create entity John,
with birthDate attribute using
type DateTime

Subscription improvements

• NGSIv1 context subscription API is very limited

– There is no operation to list existing subscriptions

• If a client loses the ID of created subscriptions, there is no way to retrieve
them through the API

– No support for permanent subscriptions

• Creating absurdly long subscriptions (e.g. 100 years) is a dirty workaround

– Fix notification structure

• Difficult to integrate to arbitrary endpoints (e.g. public REST services)

– No support for filters

• NGSIv2 subscription API solves all these limitations and
introduces some additional enhancements

– Notification attributes based on “blacklist” (in addition to the
“whitelist” approach in NGSIv1)

– Ability to pause/resume subscriptions

– Extra fields: times sent, last notification and description

22

Anatomy of a NGSIv2 subscription

23

POST /v2/subscriptions
…
{

"subject": {
"entities": [
{

"id": "Room1",
"type": "Room"

}
],

},
"condition": {

"attrs": ["temp"]
}

},
"notification": {

"http": {
"url": "http://<host>:<port>/publish"

},
"attrs": ["temp"]

},
"expires": "2026-04-05T14:00:00.00Z“
"throttling": 5

}

201 Created
Location: /v2/subscriptions/51c0ac9ed714fb3b37d7d5a8
...

POST /v1/subscribeContext
…
{

"entities": [
{

"type": "Room",
"isPattern": "false",
"id": "Room1"

}
],
"attributes": ["temp“],
"reference": "http://<host>:<port>/publish",
"duration": "P1M",
"notifyConditions": [

{
"type": "ONCHANGE",
"condValues": ["temp"]

}
],
"throttling": "PT5S"

}

200 OK
...
{ "subscribeResponse": {

"duration": "P1M",
"subscriptionId": "51c0ac9ed714fb3b37d7d5a8",
"throttling": "PT5S"

} }

NGSIv1 NGSIv2

Simpler response
(no payload)

Simpler way of specifying
expiration and throttling

in NGSIv2

Redundant Example: subscribe to
Room1 entity, so
whenever a change
occurs in the temp
attribute a notification
including only temp is
sent

List subscriptions and special fields in NGSIv2

• List operations (not available in NGSIv1)

– GET /v2/subscriptions lists all subscriptions

– GET /v2/subscriptions/<id> retrieves information of a particular
subscription

• Whitelist vs. blacklist (in the notification field)

– Use "attrs": ["A", "B"] to “include A and B in the notification”
(whitelist)

– Use "exceptAttrs": ["A", "B"] to “include all the attributes except
A and B” (blacklist)

– Use "attrs": [] to include “all the attributes” (special case)

• Other informative fields (in the notification field)

– timesSent: the number of times that the subscription has been
triggered and a notification has been sent

– lastNotification: datetime corresponding to the last notification

• Other informative fields (at root level)

– description, free text descriptive text for user convenience

24

Permanent and paused subscriptions in NGSIv2

• The status attribute can be used to pause/resume
subscriptions

• In GET operations, the status field can be

– active: subscription is active (notifications will be sent)

– inactive: subscription is inactive (notifications will not be sent)

– expired: subscription is expired (notifications will not be sent)

25

PATCH /v2/subscriptions/<id>
…
{
"status": "active"

}

PATCH /v2/subscriptions/<id>
…
{
"status": "inactive"

}

To pause To resume

Notification formats in NGSIv2

• The optional attrsFormat field can be used to choose between different notification
flavors, aligned with the representation modes

• Notifications include the NGSIv2-AttrsFormat header to help the receiver identify
the format

• legacy can be used as value for attrsFormat in order to send notifications in
NGSIv1 format

– Very useful when integrating legacy notification endpoints

26

{
"subscriptionId": "12345",
"data": [

{
"id": "Room1",
"type": "Room",
"temperature": {

"value": 23,
"type": "Number",
"metadata": {}

}
}

]
}

{
"subscriptionId": "12345",
"data": [

{
"id": "Room1",
"type": "Room",
"temperature": 23

}
]

}

{
"subscriptionId": "12345",
"data": [[23]]

}

normalized (default) keyValues values

Outer vector represent the list of
entities, inner vector the values of
the attribute of each entity (not too
interesting in this single-entity
single-attribute example)

Custom notifications in NGSIv2

• Apart from the standard formats defined in the
previous slide, NGSIv2 allows to re-define all the
notification aspects

• httpCustom is used (instead of http) with the
following subfields
– URL query parameters

– HTTP method

– HTTP headers

– Payload (not necessarily JSON!)

• A simple macro substitution language based on ${..}
syntax can be used to “fill the gaps” with entity data (id,
type or attribute values)

27

Custom notifications in NGSIv2

28

…
"httpCustom": {
"url": "http://foo.com/entity/${id}",
"headers": {
"Content-Type": "text/plain"
},
"method": "PUT",
"qs": {
"type": "${type}"

},
"payload": "The temperature is ${temp} degrees"
}

…
PUT http://foo.com/entity/DC_S1-D41?type=Room
Content-Type: text/plain
Content-Length: 31

The temperature is 23.4 degrees

PUT /v2/entities/DC_S1-D41/attrs/temp/value?type=Room
…
23.4

Custom notification configuration

update

notification

Example: send a text
notification (i.e. not
JSON) with temperature
value, using the entity id
and type as part of the
URL

29

POST /v2/subscriptions
…
{
"subject": {
"entities": [
{
"id": "Truck11",
"type": "RoadVehicle"

},
{

"idPattern": "^Car[2-5]",
"type": "RoadVehicle"

}
],
"condition": {
"attrs": ["speed"],
"expression": {

"q": "speed>90",
"georel": "near;maxDistance:100000",
"geometry": "point",
"coords": "40.418889,-3.691944"

}
}

},
…

}

• Filters (described in previous
slides) can be also used in
subscriptions

– id

– type

– id pattern

– attribute values

– geographical location (*)

Subscription filters in NGSIv2

(*) Support for geo-filters in subscriptions was added in Orion
1.3.0 (i.e. not included in IoTP v4.0)

Example: subscribe to speed changes in
entities with id Truck11 or Car2 to Car5 (both
case of type RoadVehicle) whenever speed is
greater than 90 and the vehicle distance to
Madrid city center is less than 100 km

Batch operations

• In NGSIv1 we have standard operations

– POST /v1/updateContext

– POST /v1/queryContext

• Similar but more user-friendly operations have
been included in NGSIv2

– POST /v2/op/update

– POST /v2/op/query

30

Batch operations

31

POST /v1/updateContext
…
{
"updateAction": "APPEND“,
"contextElements": [

{
"type": "Room",
"isPattern": "false",
"id": "Room1",
"attributes": [
{
"name": "temp",
"type": "float",
"value": "29"

}
]

}
]

}

POST /v2/op/update
{
"actionType": "APPEND",
"entities": [

{
"type": "Room",
"id": "Room1",
"temperature":

{
"type": "Number",
"value": 29

}
}

]
}

201 Created

NGSIv1 NGSIv2

structural
overhead

200 OK
...
{
"contextResponses" : […],
"statusCode" : {

"code" : "200",
"details" : "OK"

}
}

NGSIv2 response doesn’t
have any payload at all

lots of useless
stuff here

Example: create
Room1 entity (type
Room) with attribute
temp set to 29

Batch operations

32

POST /v1/queryContext
…
{

"entities": [
{

"type": "Room",
"isPattern": "true",
"id": ".*"

} ,
"attributes": ["temp"]

]
}

POST /v2/op/query
…
{
"entities": [

{
"idPattern": ".*",
"type": "T"

}
],
"attributes": ["temp"]

}

NGSIv1

NGSIv2

Requests are more or
less the same, but the
simplicity of NGSIv2

becomes evident
when comparing

responses

200 OK
...
{

"contextResponses": [
{

"contextElement": {
"attributes": [

{
"name": "temp",
"type": "Number",
"value": "25"

}
],

"id": "Room1",
"isPattern": "false",
"type": "Room"

},
"statusCode": { … }}

]
}

200 OK
...
[
{

"id": "Room1",
"type": "Room",
"temp": {
"type": "Number",
"value": 25

}
}

]

Example: get
temp attribute of
all entities with
type Room

Pagination

• In NGSIv1

– based on limit, offset and details

– Dirty workaround to fit count into NGSIv1
payloads, using an errorCode for something
that actually is not an error and forcing to
text based processing of the details field

– Fixed order: always by creation date

• In NGSIv2

– based on limit, offset and options=count

• This part doesn’t change too much

– Cleaner and easier way of returning count,
with the Fiware-Total-Count HTTP header
in the response

– Configurable ordering based on orderBy
parameter

• See details in the NGSIv2 specification

33

"errorCode": {
"code": "200",
"details": "Count: 322",
"reasonPhrase": "OK"

}

Fiware-Total-Count: 322

Working with IDs

• In NGSIv1

– Fields such as entity id, attribute name, etc. may have any value (*)

– This could cause a lot of problems as these fields use to act as IDs in
many places when propagated through notifications

• E.g. Cygnus MySQL sink may have problems when these fields are mapped
to tables names, whose allowed charset is very strict

– In addition, NGSIv1 allows ids or attribute names as "" (empty string)
which is weird and typically an error condition in the client

• NGSIv2 establishes a set of restrictions to ensure sanity in the
usage of ID fields. In particular:

– Allowed characters are those in the plain ASCII set, except the following ones:
control characters, whitespace, &, ?, / and #.

– Maximum field length is 256 characters.

– Minimum field length is 1 character.

– The rules above apply to the following six fields (identified as ID fields): entity
id, entity type, attribute name, attribute type, metadata name, metadata type

34

(*) Excluding the forbidden characters described in the Orion manual, which are general for all the fields in both
NGSIv1 and NGSIv2 APIs

Next things to come

• Up to now, all the slides have described the stable version of the
API corresponding to Release Candidate 2016.05
(http://fiware.github.io/specifications/ngsiv2/stable)

• There is also a work in progress (WIP) version, describing future
functionally (http://fiware.github.io/specifications/ngsiv2/latest)

• Warning: the future functionality of the WIP version is subject to
change and it may change before to be consolidated in a next
Release Candidate stable version

35

http://fiware.github.io/specifications/ngsiv2/stable
http://fiware.github.io/specifications/ngsiv2/latest

• As an extension of the filters already described in slide 20
– By entity type pattern (regex)

– By attribute value sub-key (q)

– By metadata value (mq)

– By metadata value sub-key (mq)

36

GET /v2/entities?q=tirePressure.frontRight >130

attribute name

attribute sub-key (for compound
attribute values only)

GET /v2/entities?mq=temperature.avg>25

GET /v2/entities?mq=tirePressure.accuracy.frontRight >90

metadata sub-key (for compound
metadata values only)

attribute name metadata name

New filtering features

GET /v2/entities?typePattern=T[ABC]

37

POST /v2/subscriptions
…
{
"subject": {
"entities": [
{

"idPattern": ".*",
"typePattern": ".*Vehicle"

},
],
"condition": {
"attrs": ["speed"],
"expression": {

"q": "speed>90",
"mq": “speed.average==80..100",
"georel": "near;maxDistance:100000",
"geometry": "point",
"coords": "40.418889,-3.691944"

}
}

},
…

}

• They can be used also in
subscriptions

– type pattern

– metadata value

New filtering features

Example: subscribe to speed changes in any
entities of any type ending with Vehicle (such
as RoadVehicle, AirVehicle, etc.) whenever
speed is greater than 90 its average metadata
is between 80 and 90 and the vehicle distance
to Madrid city center is less than 100 km

Metadata filtering and special metadata

• By default all attribute metadata are included in notifications

• The metadata field (in the notification field) can be used to specify a
filtering list

• The metadata field can also be used to explicitly include some special
metadata (not included by default)

– actionType: whose value is the action type corresponding to the update
triggering the notification: “update”, “append” or “delete” (*)

– previousValue: which provides the value of the attribute previous to processing
the update that triggers the notification

• The “*” can be used as an alias of “all the normal metadata”

• Examples

– "metadata": ["MD1", "MD2"] to “include only metadata M1 and M2”

– "metadata": ["previousValue"] to “include previousValue and not any other
attribute”

– "metadata": ["actionType", "*"] to “include actionValue and all the other
(regular) metadata”

– "metadata": ["*"] to “include all metadata” (same effect than not using
metadata, not very interesting)

38

(*) actionType “delete” not yet supported by Orion in 1.4.0.

Batch query scope

• This is the way of including q,
mq and geo filters (typically
used as URL param of a GET
operation) in a batch query

• Like NGSIv1 scopes but much
simpler (without the restriction
structural overhead)

39

POST /v2/op/query
…
{
"entities": [
{
"idPattern": ".*",
"type": "T"

}
],
"attributes": ["temp"],
"scopes": [
{
"type": "FIWARE::StringQuery",
"value": "temp"

},
{

"type" : "FIWARE::Location::NGSIv2",
"value" : {
"georel": ["near", "maxDistance:20000"],
"geometry": "point",
"coords": [[40.31,-3.75]]

}
}

]
}

Example: get all entities of type T
with the attribute temp as long as
that attribute is greater than 40 and
the entity distance to coordinates
(40.31, -3.75) is less than 20 km

Useful references

• Introduction to NGSI and Orion
– http://bit.ly/fiware-orion

• Orion Manual
– https://fiware-orion.readthedocs.io

• Orion page at FIWARE Catalogue
– http://catalogue.fiware.org/enablers/publishsubscribe-

context-broker-orion-context-broker

• NGSIv2 specs
– http://fiware.github.io/specifications/ngsiv2/stable
– http://fiware.github.io/specifications/ngsiv2/latest

• Orion support at StackOverflow
– Look for existing questions at

http://stackoverflow.com/questions/tagged/fiware-orion
– Ask your questions using the “fiware-orion” tag

• FIWARE Tour Guide Application
– https://github.com/fiware/tutorials.TourGuide-App

40

http://bit.ly/fiware-orion
https://fiware-orion.readthedocs.io/
http://catalogue.fiware.org/enablers/publishsubscribe-context-broker-orion-context-broker
http://fiware.github.io/specifications/ngsiv2/stable
http://fiware.github.io/specifications/ngsiv2/latest
http://stackoverflow.com/questions/tagged/fiware-orion
https://github.com/fiware/tutorials.TourGuide-App

Thanks!Thanks!

